资源类型

期刊论文 24

会议视频 1

年份

2023 1

2022 1

2021 13

2020 2

2019 1

2018 1

2017 2

2016 1

2011 1

2010 1

2004 1

展开 ︾

关键词

免疫抑制 1

六氟化硫示踪技术 1

养殖场污染防治 1

养殖场污水处理 1

农业科学 1

固体粪污处理 1

展望与建议 1

德青源沼气工程 1

放牧奶牛 1

施马伦贝格病毒 1

核心技术 1

沼气工程 1

海上风电 1

牛疱疹病毒1型 1

牛疱疹病毒4型 1

牛病毒性腹泻病毒 1

甲烷排放量 1

电压源换流器 1

电网换相换流器 1

展开 ︾

检索范围:

排序: 展示方式:

HARNESSING BIODIVERSITY FOR HEALTHY DAIRY FARMS

《农业科学与工程前沿(英文)》 2022年 第9卷 第2期   页码 238-244 doi: 10.15302/J-FASE-2022445

摘要:

Producing sufficient high-quality forage to meet the increasing domestic demand for safe and nutritious milk products is one of the critical challenges that Chinese dairy farms are facing. The increased forage biomass production, mainly contributed by agrochemicals inputs in China, is accompanied by tremendous impacts on the ecology of dairy farms and soil quality. This paper presents a framework for healthy dairy farms in which targeted management practices are applied for quality milk products with minimal adverse environmental impacts. The paper also summarizes biodiversity management practices at the field and landscape scales toward lessening inputs of water, fertilizers, pesticides and mitigating soil compaction. Dairy farming with biodiversity-driven technologies and solutions will be more productive in producing quality milk and minimizing environmental damage.

关键词: biodiversity / dairy farm / one health concept / soil health    

Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms

Maria CARIA, Giuseppe TODDE, Antonio PAZZONA

《农业科学与工程前沿(英文)》 2019年 第6卷 第2期   页码 181-187 doi: 10.15302/J-FASE-2019252

摘要:

In recent decades, dairy farms have been exposed to wide variation in profit levels due to a considerable variability of milk price, and energy and feed costs. Consequently, it is necessary for the dairy industry to improve efficiency and productivity by adopting innovative technologies. The automated in-parlour milk analysis and separation is mainly useful to produce low or high quality milk and to monitor the animal health status. Milk with high levels of protein and fat contents may reduce the intensity of standardization during cheesemaking process, reducing production costs. The study aimed to evaluate the efficiency of real-time milk separation during milking and the performance of the milking machine after implementation of AfiMilk MCS. In addition, the economic aspects were assessed. The separation of milk required the existing milking parlors to be equipped with an additional milkline to allow channeling milk with low and high coagulation properties into two different cooling tanks. The results showed that the high coagulation milk fraction, compared to the bulk milk, increased in fat (from 18% to 43%) and protein (from 3% to 7%) concentration. The technology tested has given promising results showing reliability and efficiency in milk separation in real time with affordable implementation costs.

关键词: cheese yield     infrared analysis     milk quality     real-time measurement     sensor    

NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS

Jiafa LUO, Stewart LEDGARD

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 148-158 doi: 10.15302/J-FASE-2020372

摘要: This paper provides an overview of the range of dairy pasture grazing systems used in New Zealand (NZ), the changes with increased inputs over time and associated key environmental effects including nitrogen (N) leaching and greenhouse gas (GHG) emissions. NZ dairy farming systems are based on year-round grazing and seasonal milk production on perennial ryegrass/clover pasture where cows are rotationally grazed in paddocks. There was an increase in stocking rate on NZ dairy farms from 2.62 cows ha in 2000/2001 to 2.85 cows ha in 2015/2016. During the same period annual milk solids production increased from 315 to 378 kg·yr per cow. This performance has coincided with an increase in N fertilizer use (by 30%) and a twofold increase in externally-sourced feeds. Externally-sourced feeds with a low protein concentration (e.g., maize silage) can increase the efficiency of N utilization and potentially reduce N losses per unit of production. Off-paddock facilities (such as standoff or feed pads) are often used to restrict grazing during very wet winter conditions. A systems analysis of contrasting dairy farms in Waikato (largest NZ dairying region) indicates that the increased input would result in an increase in per-cow milk production but little change in efficiency of milk production from a total land use perspective. This analysis also shows that the increased inputs caused an 11% decrease in N footprint (i.e., N emissions per unit of milk production) and a 2% increase in C footprint (i.e., greenhouse gas (GHG) emissions per unit of milk production).

关键词: dairy farms     environmental impacts     grazing systems     intensification     mitigation    

NUTRIENT USE EFFICIENCY AND LOSSES OF INDUSTRIAL FARMS AND MIXED SMALLHOLDINGS: LESSONS FROM THE NORTH

Yifei MA, Ling ZHANG, Zhaohai BAI, Rongfeng JIANG, Yong HOU, Lin MA

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 58-71 doi: 10.15302/J-FASE-2020371

摘要: The proportion of industrial livestock in China has increased over the past 30 years, which increases animal performance but causes the decoupling of crop and livestock production. Here, we aimed to quantify nutrient flows, nutrient use efficiency, and nutrient losses in different livestock systems in the North China Plain based on the NUFER-farm model. Activity data were collected by face-to-face surveys on pig and dairy (41 livestock farms) during 2016–2018. The two systems included industrial farms and mixed smallholdings. In mixed smallholdings, 4.0% and 9.6% of pig and dairy feed dry matter (DM) were derived from household farmland, but 4.8% and 9.3% of manure DM recycled to household farmland. Nutrient use efficiency in industrial farms was higher than in mixed smallholdings at animal level, herd level, and system level. To produce 1 kg N and P in animal products, nutrient losses in industrial pig farms (2.0 kg N and 1.3 kg P) were lower than in mixed pig smallholdings, nutrient losses in industrial dairy farms (2.7 kg N and 2.2 kg P) were slightly higher than in mixed dairy smallholdings. Liquid manure discharge in industrial farms was the main losses pathway in contrast to mixed smallholdings. This study suggests that feed localization can reduce nutrient surpluses at the district level. It is necessary to improve manure management and increase the degree of integrated crop-livestock in smallholdings. In industrial farms, it is desirable to increase the liquid manure recycling ratio through cooperating livestock and crop production at the district level.

关键词: industrial farms     mixed smallholdings     pig     dairy     nutrient management    

EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期

摘要:

• Livestock manure was the main organic waste in urban and peri-urban areas.

• Manure production will increase by a factor of 3–10 between 2015–2050.

• Only 13%–38% of excreted N by livestock will be recycled in croplands.

• Intensification of urban livestock production greatly increased N surpluses.

• Reducing population growth and increasing livestock productivity needed.

 

Urban population growth is driving the expansion of urban and peri-urban agriculture (UPA) in developing countries. UPA is providing nutritious food to residents but the manures produced by UPA livestock farms and other wastes are not properly recycled. This paper explores the effects of four scenarios: (1) a reference scenario (business as usual), (2) increased urbanization, (3) UPA intensification, and (4) improved technology, on food-protein self-sufficiency, manure nitrogen (N) recycling and balances for four different zones in a small city (Jimma) in Ethiopia during the period 2015-2050. An N mass flow model with data from farm surveys, field experiments and literature was used. A field experiment was conducted and N use efficiency and N fertilizer replacement values differed among the five types of composts derived from urban livestock manures and kitchen wastes. The N use efficiency and N fertilizer replacement values were used in the N mass flow model.

Livestock manures were the main organic wastes in urban areas, although only 20 to 40% of animal-sourced food consumed was produced in UPA, and only 14 to 19% of protein intake by residents was animal-based. Scenarios indicate that manure production in UPA will increase 3 to 10 times between 2015 and 2050, depending on urbanization and UPA intensification. Only 13 to 38% of manure N will be recycled in croplands. Farm-gate N balances of UPA livestock farms will increase to>1 t·ha1 in 2050. Doubling livestock productivity and feed protein conversion to animal-sourced food will roughly halve manure N production.

Costs of waste recycling were high and indicate the need for government incentives. Results of these senarios are wake-up calls for all stakeholders and indicate alternative pathways.

SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期

摘要:

Crop-livestock farms across Africa are highly variable due to in agroecological and socioeconomic factors, the latter shaping the demand and supply of livestock products. Crop-livestock farms in Africa in the 20-first century are very different from most mixed farms elsewhere in the world. African crop-livestock farms are smaller in size, have fewer livestock, lower productivity and less dependency on imported feed than farms in most countries of Europe, the Americas and the intensive agricultural systems of Asia. This paper discusses the role African crop-livestock farms have in the broader socio-agricultural economy, and how these are likely to change adapting to pressures brought on by the intensification of food systems. This intensification implies increasing land productivity (more food per hectare), often leading to more livestock heads per farm, producing fertilized feeds in croplands and importing feed supplements from the market. This discussion includes (1) the links between crop yields, soil fertility and crop-livestock integration, (2) the increasing demand for livestock products and the land resources required to meet to this demand, and (3) the opportunities to integrate broader societal goals into the development of crop-livestock farms. There is ample room for development of crop-livestock farms in Africa, and keeping integration as part of the development will help prevent many of the mistakes and environmental problems related to the intensification of livestock production observed elsewhere in the world. This development can integrate biodiversity, climate change adaptation and mitigation to the current goals of increasing productivity and food security. The inclusion of broader goals could help farmers access the level of finance required to implement changes.

NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期

摘要:

• NZ dairy farming systems are based on year-round grazing of perennial pasture (ryegrass/white clover).

• Milk production per hectare has increased by about 29% with increased use of externally-sourced feeds over the last two decades.

• Externally-sourced feeds with a low protein concentration can potentially reduce N2O emissions and N leaching per unit of production.

• Systems analysis is important for evaluating mitigations to minimize trade-offs between environmental impacts.

 

This paper provides an overview of the range of dairy pasture grazing systems used in New Zealand (NZ), the changes with increased inputs over time and associated key environmental effects including nitrogen (N) leaching and greenhouse gas (GHG) emissions. NZ dairy farming systems are based on year-round grazing and seasonal milk production on perennial ryegrass/clover pasture where cows are rotationally grazed in paddocks. There was an increase in stocking rate on NZ dairy farms from 2.62 cows ha1 in 2000/2001 to 2.84 cows ha1 in 2015/2016. During the same period annual milk solids production increased from 315 to 378 kg·yrper cow. This performance has coincided with an increase in N fertilizer use (by ~ 30%) and a twofold increase in externally-sourced feeds. Externally-sourced feeds with a low protein concentration (e.g., maize silage) can increase the efficiency of N utilization and potentially reduce N losses per unit of production. Off-paddock facilities (such as standoff or feed pads) are often used to restrict grazing during very wet winter conditions. A systems analysis of contrasting dairy farms in Waikato (largest NZ dairying region) indicates that the increased input would result in an increase in per-cow milk production but little change in efficiency of milk production from a total land use perspective. This analysis also shows that the increased inputs caused an 11% decrease in N footprint (i.e., N emissions per unit of milk production) and a 2% increase in C footprint (i.e., greenhouse gas (GHG) emissions per unit of milk production).jiafa.luo@agresearch.co.nz

ASSESSMENT OF HEAVY METALS IN HYDROCHAR PRODUCED BY HYDROTHERMAL CARBONIZATION OF DAIRY MANURE

《农业科学与工程前沿(英文)》 2023年 第10卷 第3期   页码 437-447 doi: 10.15302/J-FASE-2023507

摘要:

● Content of heavy metals in hydrochar varies considerably, from 50% to 100%.

关键词: heavy metals     dairy manure     hydrochar     hydrothermal carbonization     waste management    

NUTRIENT USE EFFICIENCY AND LOSSES OF INDUSTRIAL FARMS AND MIXED SMALLHOLDINGS: LESSONS FROM THE NORTH

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期

摘要:

• Degree of integration of crop and livestock was insufficient on mixed smallholdings.

• Liquid manure discharges on industrial farms hamper the closing of nutrient loops.

• Coupling with local crop farms is encouraged to achieve integration of crop-livestock systems.

 

The proportion of industrial livestock in China has increased over the past 30 years, which increases animal performance but causes the decoupling of crop and livestock production. Here, we aimed to quantify nutrient flows, nutrient use efficiency, and nutrient losses in different livestock systems in the North China Plain based on the NUFER-farm model. Activity data were collected by face-to-face surveys on pig and dairy (41 livestock farms) during 2016–2018. The two systems included industrial farms and mixed smallholdings. In mixed smallholdings, 4.0% and 9.6% of pig and dairy feed dry matter (DM) were derived from household farmland, but 4.8% and 9.3% of manure DM recycled to household farmland. Nutrient use efficiency in industrial farms was higher than in mixed smallholdings at animal level, herd level, and system level. To produce 1 kg N and P in animal products, nutrient losses in industrial pig farms (2.0 kg N and 1.3 kg P) were lower than in mixed pig smallholdings, nutrient losses in industrial dairy farms (2.7 kg N and 2.2 kg P) were slightly higher than in mixed dairy smallholdings. Liquid manure discharge in industrial farms was the main losses pathway in contrast to mixed smallholdings. This study suggests that feed localization can reduce nutrient surpluses at the district level. It is necessary to improve manure management and increase the degree of integrated crop-livestock in smallholdings. In industrial farms, it is desirable to increase the liquid manure recycling ratio through cooperating livestock and crop production at the district level.

INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期

摘要:

• Monitoring data of>5000 dairy farms collected and examined in uniform manner.

• Environmental performances of farms influenced by government regulations.

• N and P surpluses at farm level remained about constant with intensity level.

• N and P use efficiencies at farm, herd and soil increased with intensity level.

• Accounting for externalization of off-farm feed production affects NUE and PUE.

• Ammonia emissions per kg milk decreased with the level of intensification.

 

Many grassland-based dairy farms are intensifying production, i.e., produce more milk per ha of land in response to the increasing demand for milk (by about 2% per year) in a globalized market. However, intensive dairy farming has been implicated for its resources use, ammonia and greenhouse gas emissions, and eutrophication impacts. This paper addresses the question of how the intensity of dairy production relates to N and P surpluses and use efficiencies on farms subjected to agri-environmental regulations. Detailed monitoring data were analyzed from 2858 grassland-based dairy farms in The Netherlands for the year 2015. The farms produced on average 925 Mg·yr1 milk. Milk production per ha ranged from<10 to>30 Mg·ha1·yr1. Purchased feed and manure export strongly increased with the level of intensification. Surpluses of N and P at farm level remained constant and ammonia emissions per kg milk decreased with the level of intensification. In conclusion, N and P surpluses did not differ much among dairy farms greatly differing in intensity due to legal N and P application limits and obligatory export of manure surpluses to other farms. Further, N and P use efficiencies also did not differ among dairy farms differing in intensity provided the externalization of feed production was accounted for. This paper provides lessons for proper monitoring and control of N and P cycling in dairy farming.

Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy

Enzhu HU, Pakorn SUTITARNNONTR, Markus TULLER, Scott B. JONES

《农业科学与工程前沿(英文)》 2018年 第5卷 第2期   页码 280-286 doi: 10.15302/J-FASE-2018215

摘要: Greenhouse gas emissions due to biological degradation processes of animal wastes are significant sources of air pollution from agricultural areas. The major environmental controls on these microbe-induced gas fluxes are temperature and moisture content. The objective of this study was to model the effects of temperature and moisture content on emissions of CO and CH during the ambient drying process of dairy manure under controlled conditions. Gas emissions were continuously recorded over 15 d with paired fully automated closed dynamic chambers coupled with a Fourier Transformed Infrared gas analyzer. Water content and temperature were measured and monitored with capacitance sensors. In addition, on days 0, 3, 6, 9, 12 and 15, pH, moisture content, dissolved organic carbon and total carbon (TC) were determined. An empirical model derived from the Arrhenius equation confirmed high dependency of carbon emissions on temperature and moisture content. Results indicate that for the investigated dairy manure, 6.83% of TC was lost in the form of CO and 0.047% of TC was emitted as CH . Neglecting the effect of temperature, the moisture contents associated with maximum gas emissions were estimated as 0.75 and 0.79 g·g for CO and CH , respectively.

关键词: carbon dioxide     dairy manure     methane     moisture     temperature    

INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS

Jouke OENEMA, Oene OENEMA

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 130-147 doi: 10.15302/J-FASE-2020376

摘要: Many grassland-based dairy farms are intensifying production, i.e., produce more milk per ha of land in response to the increasing demand for milk (by about 2% per year) in a globalized market. However, intensive dairy farming has been implicated for its resources use, ammonia and greenhouse gas emissions, and eutrophication impacts. This paper addresses the question of how the intensity of dairy production relates to N and P surpluses and use efficiencies on farms subjected to agri-environmental regulations. Detailed monitoring data were analyzed from 2858 grassland-based dairy farms in The Netherlands for the year 2015. The farms produced on average 925 Mg·yr milk. Milk production per ha ranged from<10 to>30 Mg·ha ·yr . Purchased feed and manure export strongly increased with the level of intensification. Surpluses of N and P at farm level remained constant and ammonia emissions per kg milk decreased with the level of intensification. In conclusion, N and P surpluses did not differ much among dairy farms greatly differing in intensity due to legal N and P application limits and obligatory export of manure surpluses to other farms. Further, N and P use efficiencies also did not differ among dairy farms differing in intensity provided the externalization of feed production was accounted for. This paper provides lessons for proper monitoring and control of N and P cycling in dairy farming.

关键词: ammonia     externalization     feed     forage maize     front runners     manure production     milk yield     nitrogen surplus    

EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA

Solomon Tulu TADESSE, Oene OENEMA, Christy van BEEK, Fikre Lemessa OCHO

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 159-174 doi: 10.15302/J-FASE-2020375

摘要: Urban population growth is driving the expansion of urban and peri-urban agriculture (UPA) in developing countries. UPA is providing nutritious food to residents but the manures produced by UPA livestock farms and other wastes are not properly recycled. This paper explores the effects of four scenarios: (1) a reference scenario (business as usual), (2) increased urbanization, (3) UPA intensification, and (4) improved technology, on food-protein self-sufficiency, manure nitrogen (N) recycling and balances for four different zones in a small city (Jimma) in Ethiopia during the period 2015-2050. An N mass flow model with data from farm surveys, field experiments and literature was used. A field experiment was conducted and N use efficiency and N fertilizer replacement values differed among the five types of composts derived from urban livestock manures and kitchen wastes. The N use efficiency and N fertilizer replacement values were used in the N mass flow model. Livestock manures were the main organic wastes in urban areas, although only 20 to 40% of animal-sourced food consumed was produced in UPA, and only 14 to 19% of protein intake by residents was animal-based. Scenarios indicate that manure production in UPA will increase 3 to 10 times between 2015 and 2050, depending on urbanization and UPA intensification. Only 13 to 38% of manure N will be recycled in croplands. Farm-gate N balances of UPA livestock farms will increase to>1 t·ha in 2050. Doubling livestock productivity and feed protein conversion to animal-sourced food will roughly halve manure N production. Costs of waste recycling were high and indicate the need for government incentives. Results of these senarios are wake-up calls for all stakeholders and indicate alternative pathways.

关键词: compost     food self-sufficiency     livestock production     nitrogen balance     nitrogen use efficiency     scenario analysis    

EGG PRODUCTION IN CHINA: CURRENT STATUS AND OUTLOOK

Ning YANG

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 25-34 doi: 10.15302/J-FASE-2020363

摘要: Eggs are one of the most nutritious and affordable animal products worldwide. From 1985, egg production in China has retained the leading place in the world. A total of 33 Mt of eggs were produced in 2019 representing ˃ 40% of the world total production. Egg production in China is characterized by diversity in several aspects, including layer breeds, products and production systems. New breeds and synthetic lines are developed to improve the genetic potentials of egg production and feed efficiency of layers. In the past, layer farms were run mostly by small households with 100 to 1000 layers per farm. Over the past decades, egg production in China has developed toward standardization and expansion of production systems, and many of these modern intensive farms raise millions of layers. Although the Chinese egg products maintain strong competitiveness over other animal products and imported egg products, the egg industry will grow at a slower pace compared to the past. Chinese consumers are more concerned about the quality and safety of eggs and egg products, as well as the environmental issues related to animal production, which presents challenges for the Chinese egg industry.

关键词: poultry farms     China     diversity     egg production     trends    

SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA

Mariana C. RUFINO, Charles K. K. GACHENE, Rodrigue V. C. DIOGO, James HAWKINS, Alice A. ONYANGO, Ousmane M. SANOGO, Ibrahim WANYAMA, Gabriel YESUF, David E. PELSTER

《农业科学与工程前沿(英文)》 2021年 第8卷 第1期   页码 175-181 doi: 10.15302/J-FASE-2020362

摘要: Crop-livestock farms across Africa are highly variable due to in agroecological and socioeconomic factors, the latter shaping the demand and supply of livestock products. Crop-livestock farms in Africa in the 21st century are very different from most mixed farms elsewhere in the world. African crop-livestock farms are smaller in size, have fewer livestock, lower productivity and less dependency on imported feed than farms in most countries of Europe, the Americas and the intensive agricultural systems of Asia. This paper discusses the role African crop-livestock farms have in the broader socio-agricultural economy, and how these are likely to change adapting to pressures brought on by the intensification of food systems. This intensification implies increasing land productivity (more food per hectare), often leading to more livestock heads per farm, producing fertilized feeds in croplands and importing feed supplements from the market. This discussion includes (1) the links between crop yields, soil fertility and crop-livestock integration, (2) the increasing demand for livestock products and the land resources required to meet to this demand, and (3) the opportunities to integrate broader societal goals into the development of crop-livestock farms. There is ample room for development of crop-livestock farms in Africa, and keeping integration as part of the development will help prevent many of the mistakes and environmental problems related to the intensification of livestock production observed elsewhere in the world. This development can integrate biodiversity, climate change adaptation and mitigation to the current goals of increasing productivity and food security. The inclusion of broader goals could help farmers access the level of finance required to implement changes.

标题 作者 时间 类型 操作

HARNESSING BIODIVERSITY FOR HEALTHY DAIRY FARMS

期刊论文

Evaluation of automated in-line precision dairy farming technology implementation in three dairy farms

Maria CARIA, Giuseppe TODDE, Antonio PAZZONA

期刊论文

NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS

Jiafa LUO, Stewart LEDGARD

期刊论文

NUTRIENT USE EFFICIENCY AND LOSSES OF INDUSTRIAL FARMS AND MIXED SMALLHOLDINGS: LESSONS FROM THE NORTH

Yifei MA, Ling ZHANG, Zhaohai BAI, Rongfeng JIANG, Yong HOU, Lin MA

期刊论文

EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA

期刊论文

SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA

期刊论文

NEW ZEALAND DAIRY FARM SYSTEMS AND KEY ENVIRONMENTAL EFFECTS

期刊论文

ASSESSMENT OF HEAVY METALS IN HYDROCHAR PRODUCED BY HYDROTHERMAL CARBONIZATION OF DAIRY MANURE

期刊论文

NUTRIENT USE EFFICIENCY AND LOSSES OF INDUSTRIAL FARMS AND MIXED SMALLHOLDINGS: LESSONS FROM THE NORTH

期刊论文

INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS

期刊论文

Modeling temperature and moisture dependent emissions of carbon dioxide and methane from drying dairy

Enzhu HU, Pakorn SUTITARNNONTR, Markus TULLER, Scott B. JONES

期刊论文

INTENSIFICATION OF GRASSLAND-BASED DAIRY PRODUCTION AND ITS IMPACTS ON LAND, NITROGEN AND PHOSPHORUS

Jouke OENEMA, Oene OENEMA

期刊论文

EXPLORING THE RECYCLING OF MANURE FROM URBAN LIVESTOCK FARMS: A CASE STUDY IN ETHIOPIA

Solomon Tulu TADESSE, Oene OENEMA, Christy van BEEK, Fikre Lemessa OCHO

期刊论文

EGG PRODUCTION IN CHINA: CURRENT STATUS AND OUTLOOK

Ning YANG

期刊论文

SUSTAINABLE DEVELOPMENT OF CROP-LIVESTOCK FARMS IN AFRICA

Mariana C. RUFINO, Charles K. K. GACHENE, Rodrigue V. C. DIOGO, James HAWKINS, Alice A. ONYANGO, Ousmane M. SANOGO, Ibrahim WANYAMA, Gabriel YESUF, David E. PELSTER

期刊论文